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SUMMARY 
A multiple scale perturbation method is developed to obtain asymptotic evolution equations for slowly varying wave 
train solutions to non-linear dispersive wave problems. The method appears to give results which are a generalization 
of Whitham's theory on one hand and a generalization of the ray theory on the other hand. First an application is 
given to a non-linear Klein-Gordon equation, then the method is applied to two-dimensional water waves on water of 
finite depth (Stokes waves). 

1. Introduction 

In this paper a multiple scale perturbation method is developed to obtain asymptotic represen- 
tations of typical solutions of non-linear dispersive wave problems, namely slowly varying 
wavetrains. For such a wavetrain the global quantities, such as the amplitude, wave number, 
frequency, mean wave height, etc. vary by a small fraction per wavelength or per period. Hence 
two basic scales may be indicated: a local scale in which the wave phenomenon is uniform 
(periodic) and a slow (stretched) scale in which the amplitude and other global properties of 
the wavetrain vary by relative order of magnitude one. 

For  linear dispersive wave problems the ray method (cf2 Lewis [1]) has been developed to 
give asymptotic results for slowly varying wavetrains. For non-linear dispersive wave problems 
Whitham's averaged Lagrangian method ([2], [3], [4]) has found wide application. The 
justification of Whitham's method by formal perturbation methods by Luke [5] and Hoogstraten 
[6], [7] has shown that the results obtained by Whitham's method are equivalent to the lowest 
order results of an asymptotic multiple scale method based on the small modulation rate 
1/K (K >> 1) of the wavetrain as the fundamental small parameter. For wave problems involving 
a small parameter e characterizing the non-linear effect of finite amplitude, the Whitham 
theory corresponds to the investigation of wavetrains with modulation rate of order of magnitude 
1/K very much smaller than ~. 

Hence we may distinguish three cases: 
(i) eK ~> 1, corresponding to the Whitham theory with first an asymptotic expansion with 

respect to 1/K and then an asymptotic expansion with respect to e (cJ." [6], [7]). 
(ii) ~K ~ 1, corresponding to the ray theory with first an asymptotic expansion with respect 

to e, yielding a linearized problem and then using an asymptotic expansion with respect 
to I/K, namely the well-known ray expansion ([1]). 

(iii) eK = 1, being the case where the small rate of modulation of the wavetrain is the same as 
the small parameter e characterizing the non-linearity of the problem. 

In the sequel we will consider case (iii) which gives a generalization of the Whitham theory 
because the wavetrains to be studied may have a larger modulation rate than is allowed in the 
Whitham theory. This will be reflected by the appearance of some terms in the asymptotic 
evolution equations determining the slow variations of amplitude, wavenumber, etc., additional 
to the results from the Whitham theory. On the other hand the method of solution for case (iii) 
also appears to provide the generalization of the ray method to wave equations involving small 
non-linear terms. 
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In section 2 we will demonstrate our method by applying it to a relatively simple example, 
viz. a non-linear Klein-Gordon equation and we will derive asymptotically a set of three 
partial differential equations involving the amplitude, frequency and wavenumber of the 
wavetrain as functions of the slow variables. It appears that these equations have solutions 
representing wavetrains with permanent periodical envelopes, whereas the only class of wave- 
trains with permanent envelopes, being possible by the Whitham theory, is the class of uniform 
wavetrains. 

In section 3 the method is applied to the problem of two-dimensional irrotational water waves 
on water of finite depth (Stokes waves). This problem which also has been treated by Chu and 
Mei [8], [9] in a somewhat different way, provides the appropriate generalization of the 
results of the Whitham theory derived in [3] and [7]. 

2. Asymptotic Solutions of a Non-Linear Klein-Gordon Equation 

Consider the following non-linear Klein-Gordon equation for a one-dimensional wave 
function 27 (2, 7): 

= 0 ,  v ' (0 )  = 0 .  (2.1) 

For most physical applications t/(2, ~) is assumed to be small. Let us introduce the scaled 
wave function u (2, ~) by means of 

~/(2, ~) = eu(2, ~), 0 < 5 ~ 1 ,  (2.2) 

where u = 0 (1) as g~0  together with all its partial derivatives up to any order. Expanding the 
term V'(eu) in a Taylor series with respect to eu we find the equation 

urr -  uz~ + au + ebu e + ez cu 3 + . . . .  0 ,  (2.3) 

with a, b, c, etc. known constants depending on the form of V'(.). 
We want to consider slowly varying wavetrain solutions of eq. (2.3) with modulation rate e. 

It is convenient to introduce the slow variables x = 52 and t = d to describe the slow variations 
of the  wavetrain. Note that the wavelength and period are now 0 (e) in these new variables. 
Equation (2.3) becomes: 

e z ( u . -  uxx) + au + ebu 2 + 5 2 cu 3 + . . . .  0 .  (2.4) 

As a typical example we will consider the truncated equation 

e2 (u,,_ ux~) + u + ~bu2 = 0,  (2.5) 

although the complete eq. (2.4) could be treated without difficulty by the method to be demon- 
strated. Furthermore a, b, c etc. might depend on the slow variables x and/or t as well. 

Considering the uniform wavetrain solution u* of equation (2.5): 

u = u* [e- l (Kx-  ~ot)], (2.6) 

where u* depends periodically on its argument and where ~c and co denote the (constant) 
wavenumber and frequency, respectively, the wave fronts are given by the straight lines 
Kx-~ot=constant .  Looking for a slowly varying wavetrain u(x, t; 8) the wavefronts can be 
characterized by curves S (x, t; 5)= constant, being those curves in the (x, 0-plane along which 
the normal derivative of u is much larger than the tangential derivative. This condition is 
fulfilled by inserting for a slowly varying wavetrain solution of equation (2.5) a function of the 
form 

u(x, t; e )=  U [ 5 - ~ S ( x ,  t; e), x, t; 5],  (2.7) 

where U depends periodically on the rapid variable 

p = e- ~ S (x, t; e), S phase function. 
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The period of U as a function ofp may be normalized to 2re and furthermore it is assumed that 
U(p, x, t; ~) and S(x, t; ~) are O(1) as e~0,  together with all their partial derivatives with 
respect to p, x and t up to any order. The dependence of U on p gives the local periodic behaviour 
of the wavetrain, whereas the dependence of U and S on the slow variables x and t determines 
the modulation of amplitude, wave number, frequency, etc. The dependence of S on e is inferred 
from the fact that the uniform wavetrain u* contains parameters tc and co depending on e. This 
may be shown by evaluating u* exactly in inverse integral form, which is possible in the case 
of eq. (2.5). 

Introducing the local wave number • (x, t; e) and the local frequency co (x, t; r by 

= S~, co = - S t ,  cox+~q = 0,  (2.8) 

we substitute eq. (2.7) into eq. (2.5) to give 

(co2-~c2)Upp+ U =  Ze(coUp,+~cUpx)+e(co,+tc~)U~+~Z(U~x-U,)-ebU 2 . (2.9) 

It is essential in the multiple scale formalism to consider the variables p, x and t as independent. 
This means that equation (2.9) is a partial differential equation for U as a function of p, x and t, 
which, however, may be solved recursively as a set of ordinary differential equations for the 
dependence of U on p with x and t as parameters. 

For the reduced case e =0, equation (2.9) has the periodic solution 

P (2.10) u = A c o s  (co2 - K2) . 

The normalization of the period to 2~ then gives the dispersion relation 

co2- ~: 2 =  1. (2.11) 

ff equation (2.9) is considered as a non-linear ordinary differential equation for U(p), we may 
use the basic idea of Lindstedt's (or Poincar6's) method (el Minorsky [10], Roseau [11]) 
in order to obtain the periodic solution. Analogous to Lindstedt's method we are motivated by 
the observation that a single expansion of U in powers of e: 

v -  + . . . .  (2.12) 

where the U~ (i= 0, 1, 2 . . . .  ) are O (1) together with all their partial derivatives with respect to 
p, x and t up to any order, leads to secular terms in the recurrent equations for the determination 
of U1, U2, etc. This is caused by the fact that the period of solutions of the non-reduced equation 
(2.9) is slightly different from the period of solutions of the reduced equation. We may expect 
the period of solutions of equation (2.9) to be of the form 

[ co2 -- 1'C2 t �89 (2.13) 
2re ~+eQ1 +e2s +. ."  

which after normalization to 27~ yields the expansion 

(1 , )2--  R72 - -  1 q- g~"21 q-e2~c22 q- . . . .  (2.14) 

where the f2~ (i= 1, 2 . . . .  ) are functions of x, t and e being O(1) as e~0.  Following Lindstedt's 
method we substitute both expansions (2.12) and (2.14) in the equation (2.9) for U. The additional 
freedom given by the unknown functions f21, f22 . . . .  , can be used to suppress secular terms. 
In the case of a uniform wave we have p = e  - l  {~c(e)x- co(e)t} and U~= U~=0. Then equation 
(2.9) reduces exactly to an ordinaly differential equation for U(p) and our asymptotic method 
is essentially the same as Lindstedt's method. 

It should be stressed at this moment that the additional freedom provided by the introduction 
of the expansion (2.14) will appear to be not sufficient to suppress all secular terms which may 
arise in later stages of the computation. In this respect our problem is different from the ones 
involving those ordinary differential equations which may be solved approximately by 
Lindstedt's method. 
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Inserting the expansions (2.12) and (2.14) into the equation (2.9), we get 

(1 -}-/~1 "~/32 s -~-'" .)(Uopp Av 8Ulpp ~- ...)[- Uo q- t3Ux Jr- . . . .  

= 2ew(Uop,+eUlpr+...)+2eK(Uopx+eU, p,:+ ...) + 

+ 8(, x + co3(Gp + w l p +  ...) + 82(Gxx - Vo,+Wl   - w , , +  ...) + 

- eb{U2o + 2~U, Uo + . . . ) .  

Collecting terms of 0 (1) and O (8) and equating them to zero, we obtain the equations: 

Uopp+ U o = O, (2.15) 

Ulpp + U1 -= - 0 1  Uopp + 2 (cOUopt + IgUopx)-1- (wt-k Kx) U o p - b U  2 . (2.16) 

Without loss of generality we may take the solution for Uo to be 

U o = A(x, t; 8) cos p,  (2.17) 

where the positive amplitude function A is assumed to be O (1) as a--,0 together with its partial 
derivatives with respect to x and t up to any order. By allowing A to depend on e and noting 
that p may be shifted arbitrarily without changing the problem, we may require that no homo- 
geneous solutions proportional to cos p and sin p can occur in the higher order perturbations 
U1, U2, etc. In this way we keep the expressions for U~, U2, etc. as simple as possible. 

Using (2.17) the equation (2.16) for U1 becomes: 

Ulpv + U 1 = AY21 cos p - 2 ( w A , +  ~:A~) sin p -  (w, + ~cx)A sin p -  �89 +cos 2p). (2.18) 

In the righthand side of (2.18) the terms proportional to sin p and cos p are secular terms: 
they yield terms proportional to p cos p and p sin p in the solution for U1. These terms are 
not periodic in p and should be suppressed. Putting 

s = 0 ,  (2.19) 

the secular term with cos p in equation (2.18) vanishes. Furthermore we note that the equations 
for the higher order perturbations G (i= 2, 3 . . . .  ) always contain a term of the form 

AO i cos p,  (i = 2, 3 . . . .  ) (2.20) 

which is at our disposal to suppress secular terms with cos p. However, if secular terms with 
sin p would arise, no means are available to suppress them. To overcome this difficulty new 
degrees of freedom should be introduced. This is accomplished by putting 

2 (coAt + rcAx) + (cot+/%)A ,-, 8A 1-1-8212 -{- ... , (2.21) 

where the Ai (i = 1, 2, ...) are functions of x, t and e being O (1) as e--.0. In this way we may omit 
the secular term with sin p from equation (2.18) for U1 and in the subsequent equations for 
U~ (i=2, 3 . . . .  ) terms of the form -A~_ 1 sin p (i=2, 3 . . . .  ) appear which may be used to 
suppress secular terms with sin p by making a suitable choice for At- ~. 

For U1 we now obtain 

U~ = - �89 2 + X6bA2 cos 2p. (2.22) 

The equation for Uz is found to be 

U 2 p p + U 2 = A c o s p [ O 2 + 5 b 2 A 2  1 1 - ~ (A,,-Axx) - A1 sin p + 

- ~-b 2 A 3 cos 3 p -  �89 [A (tcx + co,) + 4 (coAt + KAx)] sin 2p. (2.23) 

The secular terms in the righthand side of equation (2.23) should vanish. This gives 

1 (Att-A~,~,)= 0, A~ = 0,  (2.24) f22 + ~b2 A z - -~ 
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and for U2 we obtain U 2 = ~ b 2 A  3 cos 3p+}bA[A(K~+co,)+4(coA,+tcA~)] sin 2p. 
Up to the present order of approximation we have obtained the following set of three partial 

differential equations for the slowly varying parameters A (amplitude), ~: (wave number) and 
co (frequency) as functions of the slow variables x and t: 

C O 2 - - K 2  = l+e .2[ l (A t t -Ax~) -~b2A21-+-O(g3) ,  (2.25) 

(coA 2) + (teA 2) = O(e 2) 
a t  ' 

(2.26) 

co x + to, = 0, (2.27) 

where the higher order terms O(e2), O(e 3) etc. in equations (2.26) and (2.25) may be obtained 
by computing subsequently the secular terms in the equations for U3,/-74, etc. 

The equations (2.25), (2.26) and (2.27) form the generalization of the results by Whitham's 
theory to wavetrains with small modulation rate e per wavelength or period. Indeed, for wave- 
trains with modulation rate much smaller than the small parameter e characterizing the 
non-linearity of the problem, the terms involving derivatives of A in equation (2.25) are 
negligible with respect to the other terms involving A, co and ~ only. Then equation (2.25) 
reduces to Whitham's algebraical dispersion relation between co, K and A. The additional terms 
in (2.25) compared to Whitham's theory represent the influence of the slow modulation on the 
dispersion relatiorL They are not a result of the non-linearity of the problem. In fact, by putting 
b = 0  we have a linear governing equation for which the asymptotic modulation equations 
(2.25), (2.26) and (2.27) still contain these additional terms. Remark that in the linear case 
(b=0) we have Uo=A cosp, U~-___0 (i=1, 2, 3, ...) and the dispersion equation (2.25) then 
terminates after the O (e 2) term, and the righthand side of (2.26) becomes exactly zero. 

One of the ways to solve equations (2.25), (2.26) and (2.27) approximately is to assume that 
the amplitude A and the phase function S are expandable in the form of an asymptotic power 
series in e: 

A (x, t; ~ A o (x, t) + t) + A2 t) + . . . ,  (2.2S) 

S (x, t; z ) -  So (x, t)+eS, (x, t)+e2S2 (x, t)+ . . . .  (2.29) 

1r c o = - S  t . 

Substituting these expansions into eqs. (2.25) and (2.26), equating terms O(1), O(a), O(e2), etc. 
to zero subsequently, we obtain the following sets of recursive equations for the perturbations 
Ai and S i (i=0, 1, 2 . . . .  ): 

2 2 Sot-Sox = 1, (eiconal equation) (2.30) 

2So,Sl t -2SoxSlx = 0, (2.31) 

1 , " 5 2 2 2S~ 2S~ = Ao (A~176  A~ + S21x-S2" "'" etc. (2.32) 

2So~ Aox - 2Sot Aot + (So~x- Sort) A o = 0, (2.33) 

2SoxAI~- 2SotAlt+(So=-So,,)A1 = 2S1,Aot- 2SaxAo~-{Sa=- SI,~)Ao . . . .  etc. (2.34) 

For a wavetrain given at t = 0  we may prescribe the initial conditions: 

So (x, O) = a(x) , S, (x, O) =- O ( i = 1 , 2  . . . .  ), 
(2.35) 

Ao(x ,O)=a(x) ,  A,(x,O)=O ( i=1,2 ,  .). I 
First So(x, t) may be solved from (2.30) by using the method of characteristics, then the linear 
equation (2.33) may be solved for Ao by transforming on characteristic coordinates, which are 
the same as for the eiconal equation (2.30). Then the homogeneous linear equation (2.31) for 

Journal of Engineerin9 Math., Vok  6 (1972) 341 -353  



346 H. W. Hoogstraten, R. van der Heide 

S 1 with zero initial condition is seen to have the zero solution: $1 _ 0  and from this result 
follows that also eq. (2.34) for A1 gives A 1 =-0. The calculation may proceed further by solving 
S 2 from equation (2.32) and subsequently A2, $3, A3, . . . ,  from higher order equations. It 
may be shown easily that in the case of a linearized problem (b = 0) the results are equivalent 
to those obtained by the ray method ([1]). 

A special property of the equations (2.25), (2.26) and (2.27) is the existence of solutions repre- 
senting wavetrains with permanent envelopes. To make this clear, co is eliminated from these 
equations to give approximately 

0 [ ~ _ ~ ( A  _ A x x ) s  b2A2] - -  = 0,  (2.36) K,+CoKx+�89 x o COo 3 

(cooA2), + (Coc%A2)x = 0, Co0c ) = o0; 0c) = ~:/co o(~c). (2.37) 

For wavetrains with permanent envelopes we consider solutions of eqs. (2.36) and (2.37) of 
the form 

~c=tc(~), A = A ( ~ ) ,  ~ = x - C t ,  (2.38) 

where C will be determined later Oll Insertion of these expressions into (2.36) and (2.37) leads 
to a set of two ordinary differential equations for ~:(~) and A(0, of which the second one has 
been integrated once: 

b2A 2 ] 
d [Ar162 ( C 2  1 ) - }  - -  = 0,  (2.39) (C~162 + �89 ~ l_cooA O~o j 

( C -  Co)cOo A2 = constant.  (2.40) 

In order that we have other approximate solutions than the trivial one A = constant, ~c = constant 
(which would be the result from the Whitham theory), the two terms in equation (2.39) should 
be of the same order of magnitude. To this end we consider wavetrains for which the wave- 
number can be written as follows 

K(~) = ~+  e~c(1)(~)+ . . . .  ~ = constant.  

Then we have ~c' (4) = O (e) and if we choose C to be equal to the linear group velocity correspond- 
ing to g, we also have 

= c + + . . . .  c - -  1 .  

Substituting these relations in equations (2.39) and (2.40) and linearizing with respect to e, we 
obtain approximately 

d d- I-A"d  L A 1 COo(ff)co;'(~)~ [-(tc(1)) 2] + (C 2 -  1)-~bZA 2 = 0,  (2.41) 

~(i)A 2 = constant.  (2.42) 

Eliminating ~c (~) from eqs. (2.41), (2.42), performing two integrations and put t ing/~=A 2, w e  
get finally 

(1 - C 2)/~ = - -}b z ~3 + D2 ~2 + D t E + D O , (2.43) 

with Do, D~ and D2 arbitrary constants of integration. This is a similar equation as derived 
by Chu and Mei [8] for water waves on water of infinite depth. Equation (2.43) has periodical 
solutions in the form of "cnoidal" functions and solitary wave solutions are also possible. 
Remark that/~ = O (1) so that the possible modulations of the amplitude are O (1). The variations 
of the wavenumber, described by e~c (~), are O(e) about the constant value t~. We recall that the 
Whitham equations in this case only have trivial permanent envelope solutions in the form of 
uniform wavetrains. An investigation by Ablowitz and Benney [14] has shown that by con- 
sidering higher order terms in the Whitham theory the modulation equations are modified 
by terms allowing them to have non-trivial permanent envelope wave solutions as well. How- 
ever, the possible modulations of ~ and A should be expected to be both very small in that case. 
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3. Application to Nonlinear Water Waves (Stokes Waves) 

In this section we will apply the method of section 2 to the problem of two-dimensional ir- 
rotational free surface waves on water of finite depth_ Let the undisturbed free surface of the 
water coincide with the plane z = 0 of a Cartesian x, y, z-coordinate system, and let the bottom 
be given by the equation z =  -h--constant_ We will consider two-dimensional wave motions 
in the fluid, which means that all quantities are independent of one of the horizontal coordinates, 
y say. 

As the basic small parameter of the problem we will use the wave steepness e= a/2 ~ 1, 
where c~ and 5[ denote a characteristic amplitude and wavelength, respectively. Since we will 
consider 2 to be of order unity, e may also serve as a measure for the (small) amplitude of the 
waves .  

Let the equation of the free surface be given by the equation z=~l(x, t; e), then there exists a 
velocity potential ~(x, z, t; ~) in the region 0(x, t)_>z >__-17, satisfying the two-dimensional 
Laplace equation with two free surface conditions at z = ~/and a bottom condition at z = - h .  
As we consider waves with small but finite amplitude, it is useful to introduce the scaled velocity 
potential 4~(x, z, t; ~) and the scaled free surface elevation t/(x, t; ~) as follows: 

0 ( x ,  t ;  = t ;  z, t ;  : z, t ;  

where t /and �9 are assumed to be O(1) as e--,0, together with all their partial derivatives up to 
any order. The non-linear boundary value problem involving ~ and r/ then becomes ([12], 
[13]): 

~ x ~ + 4 ~  = O, erl(x , t ;e)>z>-h 

t h + et/~ ~b~- ~ = at z = eq (x, t; e) 

~bz = 0 ,  at z = - h  

(3.1) 
(3.2) 
(3.3) 
(3.4) 

where 9 denotes the acceleration of gravity. For e=0  this boundary value problem reduces 
to the well-known linear problem for water waves of infinitesimal amplitude. 

Before applying the perturbation method of section 2 it appears to be convenient to rewrite 
free surface conditions (3.2) and (3.3) as a single condition for ~b to be satisfied at the undisturbed 
free surface z=0. To this end first t/is eliminated from condition (3.2) and (3.3) to give a single 
condition for ~ to be satisfied at z-= et/: 

q~,+g~b~+Ze[~b~t+~bzq)~,] + e2 [~x2~bx~+2~b~z~b~+ ~z2 ~z=] = 0. (3.5) 

Using condition (3.2), r/may be expanded in powers ofe by means of a Taylor expansion about 
Z = 0 :  

1 [q~ a 2 2 e [~t@~t]~=o+O(g2) (3.6) : - - g  

With the aid of this expansion for q we may expand condition (3.5) to give the final condition 
for ~b to be satisfied at z=  O: 

+ e a [ ~ b 2 ~ + 2 ~ +  

1 7 

g A 

~b2cl)=~+(@~tz+g~bz*)(; ~ '~ t -1r  - 2g 2991 ~ ) +  

2~b,(~xz~bxt+q~x~b~zt+~zz~_,+~bz~bzz,)] + O(~3)=0,  at z O. 
9 

(3.7) 

In order to study slowly varying wavetrain solutions with modulation rate 0 (e) per wave- 

Journal of Engineering Math., Vol. 6 (1972) 341-353 



348 H. W. Hoogstraten, R. van der Heide 

length or period, we introduce the slow variables x* and t*: 

X*= gX, t * =  gt 

and look for solutions ~ of the form 

�9 = t*; O, x*, z, t*; (3.8) 

where 4 is a periodic function of the variable p=e-lS(x *, t*; 0 with period normalized to 
27z. Omitting the asterisks, we then find for 4 the equation 

~:2r162 = _2e~CCpx_e~cxCp_e2r 0 >z  > - h  (3.9) 

with ~: = Sx and co = - S ,  as notations for the local wavenumber and local frequency, respec- 
tively. The bottom condition for 4 becomes: 

4== O, at z =  - h  (3.10) 

and the free surface condition (3.7) for �9 transforms into the following condition for 4 at z=O: 

F (03 4p4.. _co4.4=1 + co24pp + g4~ = e / 2(04P' + (0'4p + 2(0~z 4p 4pp + 2(04~ 4pz 7 7 
+ ~2 1 - 4 t , -  2~c, 4~ - 2~c24p 4pt + 2(0~C4p 4px + 

t _  

(02 (0(0t 
+ 2(0~:4x 4pp-  24z 4~, + 2 - -  4p 4p,z + 4p 4p= + 

g g 

(.02 
+ - -  4 , 4 . . z+4 ,4= -  1r 4p 4pp-- 2tC24p4z 2 4 . z - 4 z 4 =  + g 

-- ((024ppz'~O4zz) 7 4p4pz -- 299 42p -- 2gg 42 -}- 

2(02 ~c 2 
4p(4~4ppp-4p4pp~)l + O(e3) O. (3.11) 

g ] 

For ~ =0  a solution for 4 being periodic in p is easily found by means of separation of variables: 

I gtc2tgh~ch]sinl pg~ctgh~ch] (3.12) 
4 = a cosh (z+ h) 0) 2 (02 j '  

The normalization of the period to 27r yields the dispersion relation for linear water waves: 

(02 = (0~(~c)= g~c tgh ~ch. (3.13) 

For small positive values of e we still expect the problem to possess solutions periodic in p, 
however, the period, which by (3.12) is found to be 

27C(02 

g~ tgh ~ch 
in the reduced case e = 0, will in general be different in the non-reduced case e > 0. Therefore 
the non-reduced period is assumed to be of the form: 

2=(02 
g~c tgh tgh-k e~21 ~ - E 2 ~ r - ~ 2 - [  - . . .  

where the ~2~ (i= 1, 2 . . . .  ) denote unknown functions of x, t and e, being O(1) as e~0.  The 
normalization of the non-reduced period to 2u gives the following expansion for 0)2: 

(02 ~ o)2 (~)+ e[21 + e2f22 + . . . .  (0g (to) = gK tgh 1oh. (3.14) 
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This is the appropriate generalization of the linear dispersion relation (3.13) to non-linear 
waves with modulation rate O(~) per wavelength or period. The functions f2t, ~ 2  . . . .  will 
be needed later on to suppress secular terms. 

Analogous to the method of the preceding section, 0 is expanded as follows: 

~b ~ qSo q-e~bl q-ezq52 + . . . ,  (3.15) 

with q5 o, q6~, ~be . . . .  functions of p, x, z, t and e, being O(1) as e ~ 0  together with all their partial 
derivatives up to any order. Substituting the expansion (3.15) into eq. (3.9) for q5 and equating 
to zero the contributions of O(1), O (~) and O (e:), respectively, we get the following equations 
for q~o, ~,  and qba : 

~c~ 4)opp+ 4,o= = O, 

The bottom condition (3.10) leads to 

qSi~=O, i=O, 1 , 2 , . . . , a t z = - h ,  

(3.16) 
(3.17) 
(3.18) 

(3.19) 

and the free surface condition (3.11) gives the following conditions for q5 o, ~ and q52 to be 
satisfied at z = 0: 

602 q~opp + gqSo~ = O, (3.20) 

602 {~ lpp + g r  lz = -- ~'~1 ~l)Opp -}- 26005opt + 60t qSop + 260~z qSop ~bopp + 
(O 3 

+ 260q~o= q~o~= - -9- 4~op 4o~p~ - 60q~o~4%~=, (3.21) 

co2qSzvp+ gq52z = -Q:q51pv-QzOopv+260(olv,+60,~lv+ 

+ 260K2 (q~Op ~91pp + ~91p (~ Opp) -}- 260 (?POz (91pz "}- ~)lz ~)Opz) -}- 

603 
- - -  (~op~l.~+ ~pr ~lp~o=)+ g 

- ~o,,- 2K~, ~gp- 2~o~ ~o~, + 260~(~op r + ~o~ ~o,,) + 
602 600) t 602 

-2~o=~oz,+2 ~- r + - -g  r + ~- ~o,~o..+ 

4 2 2 2 " +~o,~oz=-~ ~ o ~ o . - 2 K  ~o.r 

2 1 Is 2 -- (.0 2 ~OOpQSOpz) +(60 q~o.=+g~0=)(~ ~ + ~ q% 7 + 
/ 

2602/s 
-~ - -  ~)Op(~)Op~;ppz -- ~)Oz ~Oppp), (3 .22)  

9 

where the expansion (3.14) for 602 has been inserted only in the lefthand side of condition (3.11) 
in order to avoid unnecessary computational work. 

The general solution for q~0 being periodic in p with period 27r is given by 

(% = a(x, t; ~)cosh [x (h+z) ]  sin p +  O(x, t; e), (3.23) 

where the unknown functions a and ff are O(1) as e--,0, together with all their partial deriv- 
atives up to any order. Without loss of generality we may discard solutions proportional to 
cosh [K(h +z)]  cos p, which may be absorbed in ~b o by a suitable shift of p. Furthermore, by 
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allowing the potential amplitude function a to depend on e we have the freedom to require that 
terms proportional to cosh[~c(h+z)] sin p should not occur in the higher order solutions 
q51, q52, etc. 

Using expression (3.23) for q~o, we get for q~l the equation 

~c 2 (O ~ pp + q51~ z -- - (~c:,a + 2~a~) cosh [tc(h + z)] cos p - 21ctc.a(h + z) sinh [~c(h + z)] cos p. 
(3.24) 

A particular solution of (3.24), satisfying bottom condition (3.19) and being periodic in p 
with period 2zc is given by 

~ = - �89 2 cosh I-to(h+ z)] cos p - a ~ ( h + z )  sinh [~:(h+z)] cos p. (3.25) 

Putting qS~ =q~l +~bf, we get for q~l the homogeneous equation corresponding to equation 
(3.24): 

~c201,p+01z~-= 0, (3.26) 

with the bottom condition 

(}az = 0 at z = - h  (3.27) 

and the free surface condition at z =0:  

092~91pp-[-gffl)lz = [a(D t cosh ~ch+ 260(a cosh ,ch),-60ga~h sinh tch+ 

+ 9aKxh cosh Kh + ga~(sinh ~ch + ~ch cosh Kh)] cos p + 

+ag2~ cosh Kh sin p-60~c2a 2 sin 2p+ 

+�89 cosh ~ch sin 2p. (3.28) 

It may be verified that the term with cos p in the righthand side of (3.28) gives rise to a solution 
proportional to 

p sin p cosh [K(h+z)]-~(z+h)cos p sinh [ tc(h+z)] .  

This kind of solution is not periodic in p and cannot occur in our solution. Hence the coefficient 
of cos p in condition (3.28) should be expanded analogous to the method of section 2: 

a60t cosh ~ch + 260 (a cosh rch)t- 60~ axh sinh ~:h + 9aKx h cosh v:h + 

+ 9ax(sinh ~ch + ~:h cosh ~:h)-.~ gA1-}-gZA 2 -}- . . . .  O (e 2) (3.29) 

in order to remove the secular cos p term from (3.28) and at the same time to be able to suppress 
similar terms in higher order problems by chosing the unknown functions A 1, A2 . . . . .  in 
a suitable way. Note that we have taken A 1-0 ,  since no secular cos p terms will arise in the 
boundary value problem for ~b2. In a similar way one shows that the term with sin p in condition 
(3.28) is a secular term and hence it must vanish. This gives: 

O1 = 0, (3.30) 

which means that 

6o 2 = 092 (~c)+ O (~2). (3.3 i) 

In order to give a physical interpretation of eq. (3.29) the "physical" amplitude A (x, t; e) is 
introduced as the coefficient of cos p in the expansion of the free surface elevation t/(p, x, t; e). 
According to eq. (3.6) and using (3.31) the expansion of r/in terms of 0 appears to be 

I ~  Pl _ e l  _602 Pl~=o O(~2)' (3.32) 
4o z=o + 
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Using expression (3.23) for q~o it is seen that the physical amplitude A is related to the potential 
amplitude a as follows 

A = __xa sinh tch. (3.33) 
coo 

Equation (3.29) may be expressed in terms of & and upon use of (3.33) and (3,31) it may be 
shown after some calculations to be equivalent to 

A z 
Et+[co'o(~c)E]~+O(e ~) = 0 ,  E = - - .  (3.34) 

coo 

This equation has the physical interpretation of a conservation equation for the "energy 
density" E propagating with linear group velocity co; (K). 

The boundary value problem for ~1 may now be solved to give 
3a21r 2 

~t  -- 8O9o sinh2tch cosh[2~c(h+z)] sin 2p+ 0*(x, t; ~)+O(~2), (3.35) 

where the additional function ~* is still undetermined; it appears to be determined by the 
suppression of a secular term linear in p in the boundary valiae problem for q53 and hence it is 
of no further concern for us as we will break off after the determination of the secular terms in 
the problem for ~b2, which problem does not involve t)*. The unspecified terms 0 (~2) in q~1 are 
a result of the replacement of co2 by coo 2 + 0 (e2) during the calculation and they do not play a 
role in the problem for q52. 

We now may write down the equation for ~b2, using the expressions found for q~o and ~b~. 
We get: 

~c 2 (O2pp+ ~b2~= = - 0 ~ +  [.. .] cos 2 p - a ~  cosh [tc(h+z)] sin p + 

- (3axtc~+atc~+2~ca~)(h+z) sinh [K(h+z)]  sin p + 
3 2 - (yatc~ + a~3c~x + 3~ca~tc~) (h + z) 2 cosh [~ (h + z)] sin p + 

- amr (z + h) 3 sinh Ire (h + z)] sin p + 0 (e2), (3.36) 

where the terms with cos 2p have been !eft unspecified since they do not give rise to secular 
terms in q52. A particular solution qS~ of eq. (3.36), satisfying bottom condition (3.19) is given by 

4)~ {- �89 2 cosh[tc(h+z)]  1 1 = - (ga~c~ + za~ ~Cx) (h + z) 3 sinh [K (h + z)] + 
1 2 - ga~c~(h+z) 4 cosh [-~c(h +z)]  } sin p - �89 2 + [.. .] cos 2p+ O(e2). (3.37) 

Putting q52 =q;2 + ~b2 e we get for q~2 the same homogeneous equation as for ~1, with the same 
bottom condition (3.27). The free surface condition for q32 becomes at z = 0 :  

cooc~2pp+g(o2~ = a cosh Kh[O2 + F~ + F2] sin p+ [ghO~-~O~+ F3] + 

+ [.. .] cos 2p+  [.. .] cos 3p+0(~2) ,  (3.38) 

with the abbreviations: 

( 9  , ) 
~c2~ a2~c ~ cosh 2tch ~sinh2rc h + 4 cosh2tch F1 = - 2co~ + c o s h  2 ~ch 

+ a 2 ;r (~__ cosh 2 ~:h) + O (~2), 

§ 

(3.39) 

a G -  (a cosh tch),t 
cosh ~ch 

+ cooh2(aKx)t+2OgoaxK~h 2 +�89 2 + 

+ [c%a~cx~c~h3+2cooax~h+axcoozh] tgh tch + 

( \ 
\cosh21c h + 3h 2 tgh tch/ + 9hax~+�89 (3.40) 
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F3 = - �89 o [aaxK2h tgh tch- a 2 t% cosh 2 Kh-  aax K (1 + cosh 2 ~ch) + 

tc sinh z ~h~ - a2K~Gh cosh ~ch sinh ~h]- �89  cosh ~ch)~a~ z osh ~h + c o ~ /  + 

(DO O.)Ot 
- ~c~cta2 c~ + - ~ 9  a2~c cosh ~ch sinh tch+O(e2). (3.41) 

The term F1 does not contain derivatives of ~ and a, whereas F2, containing derivatives of 
~c and a, is the contribution of the particular solution ~bP2, 

The righthand side of condition (3.38) contains two secular terms: the term with sin p, 
yielding the same type of nonperiodic solutions as the secular terms in the free surface condition 
(3.28) for q~ 1, and the term involving F3, which gives rise to secular terms in the following way. 
Putting 

~2 = R e [ - f ( z ) ] ,  )~ = P- + iz ,  j = q ~ 2 + i ~ ,  
K 

then f 0 0  is an analytic function of the complex variable X which has to be bounded in the strip 
- h < Im )~_-< 0. If we only consider a constant term, a say, in the righthand side of the free 
surface condition (3.38), then this condition may be written as: 

(02 42pvq-g~a2z = (O2 ~Zpp--gE~p -= ~7, at z = 0 .  

Integration with respect to g then gives: 

oo2(a:p-g~c~ = ap+cons tan t ,  at z = 0. 

Now both ~2v and ( should be bounded for all p at z=0,  so ap is a secular term. 
Equating both secular terms in condition (3.38) to zero, we get: 

f22 + el +V2 = 0,  (3.42) 

ohtPxx- Gt + F3 = 0.  (3.43) 

Hence we find from (3.42) and (3.14) the dispersion equation : 

/?2ff~ 2 g 2 
oo = COo(X ) + ~ + ... = o3 o - ~mo (Vl + F2)+O(ga) . 

By some straightforward calculations this relation may be shown to be equivalent to 

g2 9bg2 ~2 A 2 82 

co = COoffC)+ez~cfi + 2C~ cosh2x h + �89 COo D o -  2~o F2+O(e 3) (3.44) 

with 
9 tgh ~ ~ch- 10 tgh 2 Kh+ 9 

D O = 8 tgh 3 ~:h 

and where f i=0x denotes the mean velocity and eb, b = O(1), denotes the mean wave height 
which by (3.32) is related to 0t as follows: 

g~cA 2 
gb = - G 2 sinh 2•h + O (e2). (3.45) 

Another straightforward calculation shows that equation (3.43) may be written as 

~b& + ~--x~ (flh+~9~cE)+_ O(e 2) = 0 ,  (3.46) 

which may be interpreted physically as an averaged equation expressing the conservation of 
mass. 
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By elimination of ~o and ~ we may write down the final results as follows: 

~c ~ [ ~2 gbtc2 e2 A 2 e2 Fa ~ 
~ q- ~x (~176 -}- 2r coshZtch + � 8 9  o DO - 2 0 o J  + O(e3) = 0,  (3.47) 

0E 3 A 2 
c3-T + ~xx [~ 0,  E = - - ,  (3.48) 

(.0 o 

Off ~ I  gtcA2 1 
~ + ~x ab + 2 sinh 21ch + O(ea) = 0 ,  (3.49) 

5b 0 
+ [ h+�89 0. (3.50) 

These four equations constitute a set of equations to determine the four slowly varying para- 
meters ~ (wave number), A (wave amplitude), b (mean wave height) and fi (mean fluid velocity) 
as functions of the slow variables x and t. The only difference with the results obtained by 
Whitham's method is the appearance of the extra term involving the rather complicated 
expression F 2 in the dispersion equation (3.47). For very slowly modulated wavetrains the 
derivatives of a and a: appearing ha F 2 are small compared to a and tc themselves, In that 
case F 2 may be neglected and Whitham's results are found again, The implications of the ad- 
ditional terms compared to Whitham's results are discussed fully in the two papers of Chu and 
Mei [8], [9]. 

We finally note that for the case of water of infinite depth only two equations involving tr 
and A remain: 

Oo( )+�89 + a-i- + + = o 

~E ~ A 2 

co o 

These equations are discussed also in [8], [91, where it is shown among others that they 
allow periodic solutions representing periodically modulated wavetrains which are not 
possible within the scope of the Whitham theory. 
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